Author Archives: William G. Whitford

The Green Imperative: Part Two — Engineering for Sustainability in Single-Use Technologies

In BPI’s June 2020 issue, the first installment of this series introduces the study and implementation of single-use (SU) technology to provide a more sustainable manufacturing environment (1). We presented evidence showing that the economic and social benefits of SU systems currently outweigh the residual environmental risks. Not only is SU technology often a better environmental choice than traditional biomanufacturing options, it also is sometimes the only choice for rapid process design and facility start-up. In situations such as the…

Better Bioprinting Ahead: Breakthroughs and Remaining Challenges

Bioprinted organs soon could revolutionize clinical trials, transplantation, and regenerative medicine. But as Chris Lo reminds us in a new GlobalData report (1), several technical hurdles must be negotiated before biopharmaceutical companies can harness three-dimensional (3D) bioprinting for such purposes. BPI explores persistent printing problems and promising solutions below by analyzing Lo’s report alongside commentary from founding editorial advisory board member Bill Whitford (bioprocess strategic solutions leader at GE Healthcare Life Sciences), Lev Gerlovin (vice president in the life sciences…

Single-Use and Sustainability

What is sustainability? For some people, the special meaning of the word in an environmental context is how biological systems remain diverse and productive over time. Thus, sustainability is not just about saving resources or preventing pollution within a narrow context; it's more a long-term holistic approach to ecologically relevant activities. For other people, the term includes all environmental concerns, including those of immediate and/or nonbiological nature. Examples of such issues might involve a town's solid-waste disposal system or a…

Single-Use, Continuous Processing of Primary Stem Cells

Many potentially therapeutic products involve the culture of stem cells. Their commercial success depends on the development of scalable good manufacturing practice (GMP) technologies that can both robustly and cost-effectively produce very large numbers of cells. Through many improvements and innovations in bioprocessing operations over the years, fed-batch suspension culture has remained the most common mode for large-scale biopharmaceutical manufacturing. However, some recent events suggest that may be changing (1,2). For the culture and expansion of stem cells, large-format adherent…

Supporting Continuous Processing with Advanced Single-Use Technologies

It has been 10 years since the US Food and Drug Administration (FDA) articulated — in its guidance for process analytical technology (PAT) — the goal of “facilitating continuous processing to improve efficiency and manage variability” (1). Since that time, regulators and industry have worked toward applying continuous processing (CP) to all facets of pharmaceutical manufacturing, including bioproduction (2, 3). Last year, the European Medicines Agency (EMA) referred to CP in its draft Guideline on Process Validation, and the FDA…

Single-Use Technology Supports Follow-On Biologics

    Follow-on biologics (FOBs, or biosimilars) differ from generic small-molecule compounds and pioneer biopharmaceuticals in several ways. Those differences affect aspects of their regulatory approval pathway, analytics, and marketing (1). Many biological active pharmaceutical ingredients (APIs) are actually incompletely characterized dynamic mixtures of macromolecules with slightly different primary compositions or higher-order structure (microheterogeneity). Those properties of macromolecules (unlike small molecules) are greatly influenced by their individual manufacturing process. Emerging regulatory guidelines for follow-on biologics are clarifying aspects of their…

Considerations in Scale-Up of Viral Vaccine Production

    On 28 June 2011, the Food and Agriculture Organization of the United Nations declared the Rinderpest cattle plague virus to be the second troublesome virus (after smallpox) that humans have eradicated from the Earth (1). Such achievements herald exciting times both for classical vaccinology and for many new and developing technologies. Here we consider scaling up of vaccines and related hybrid, targeted, and conjugated viral therapeutics that are made through animal cell culture. The vaccine industry is now…

Protein-Free Culture of Sf9 Cells

The development of insect cell culture production systems has produced opportunities for the expression of recombinant proteins for research and therapeutic applications in a non–mammalian cell culture environment. Various insect cell lines have been developed for the baculovirus expression vector system (BEVS). Development of stable transfected Drosophila and lepidopteran cell lines has offered a nonlytic culture for the production of recombinant proteins from insect cells. Spodoptera frugiperda Sf9 cells have been successfully adapted to suspension culture and have become an…

Single-Use Systems As Principal Components in Bioproduction

    Single-use systems (SUS) have become an accepted component of animal-cell–based bioproduction. No longer a merely exciting possibility, they have emerged as a significant and growing resource for companies to use from process development to manufacturing of approved products. Having been examined for years in less regulated environments, off-the-shelf SUS are now in regular use to some extent in nearly every segment of the production train by contract manufacturing organizations (CMOs) and biopharmaceutical companies in mid-scale production applications. For…

Using Disposables in Cell-Culture–Based Vaccine Production

    A recent private grant of US$10 billion for human vaccine applications illustrates the revival of interest in vaccine science (1). The 2009 response by vaccine manufacturers to the H1N1 pandemic revealed the convergence of three technological developments. First is a revolution in technology: Vaccines are being developed for diverse and unprecedented applications through a number of entirely new approaches. Second is the recent adoption of cultured cell-based production for a growing number of vaccines, such as influenza. And…