Demand for biopharmaceuticals is growing rapidly as new products and manufacturing technologies arise. For example, such approaches as immunooncotherapy and oncolytic viral therapy are now entering one of the fastest growing markets in medicine — cancer treatment. This market “should grow from [US]$177.4 billion in 2021 to $313.7 billion by 2026, at a compound annual growth rate (CAGR) of 12.1%” (1). Both preclinical and final biomanufacturing increasingly incorporate single-use (SU) components, including hardware and systems for containment and connectivity. Solutions…
Author Archives: William G. Whitford
Deciphering Nutritional Needs in Bioprocess Optimization: Targeted and Untargeted Metabolomics with Genome-Scale Modeling
Microbiology has risen as a major part of global industry over the past three decades. Industrial microbiology, biotechnology, biopharma and now biointelligent production systems (1) embrace a wide range of manufacturing platforms and product areas involving microbes, animal cells, and plant cells — as well as whole organisms. The multibillion-dollar applications of biomanufacturing display great variety. They include microbial-based production of such valuable metabolites as amino acids, vitamins, solvents, and organic acids as well as larger products such as enzymes,…
Reflections on Career Opportunities in the Biopharmaceutical Industry
Mindset is important to working in the biopharmaceutical industry. Three distinguishing behaviors will enable new entrants to build rich and fulfilling careers: keeping an open mind, serving a purpose for the benefit of a greater good, and making risk-based decisions. The range of experiences in our own careers can help to illustrate the broad array of opportunities that you can find in the life sciences when such a mindset is applied. Below, we discuss some of those experiences and lessons…
Growing Value of Artificial Intelligence in Biopharmaceutical Operations
Some people have found significant disillusionment regarding artificial intelligence’s (AI’s) limitations in application. For example, mass-media productions (e.g., Ex Machina) encourage the goal of achieving general AI or super AI, which supplies comprehensive, self-instituted results. In truth, narrow AI — which addresses only one task and provides specific results — is growing rapidly, both in power and number of applications (1). Although many different modeling methods remain dominant, AI is providing significant and increasing value in drug discovery, process development,…
eBook: Intensifying Processes for Monoclonal Antibodies
The commercial manufacturing success of monoclonal antibodies (MAbs) has become a touchstone of the biopharmaceutical industry. MAbs are so well established that they often are referred to as “traditional” biologics, and well-known MAb processing methods have become a model for processing of other “advanced” or “emerging” therapies. But MAb processing continues to advance as biomanufacturers seek ways to improve efficiencies, lower costs, and (most recently) increase sustainability of facilities. Drug makers are particularly interested in strategies for MAb process intensification.…
The Green Imperative: Part Two — Engineering for Sustainability in Single-Use Technologies
In BPI’s June 2020 issue, the first installment of this series introduces the study and implementation of single-use (SU) technology to provide a more sustainable manufacturing environment (1). We presented evidence showing that the economic and social benefits of SU systems currently outweigh the residual environmental risks. Not only is SU technology often a better environmental choice than traditional biomanufacturing options, it also is sometimes the only choice for rapid process design and facility start-up. In situations such as the…
Better Bioprinting Ahead: Breakthroughs and Remaining Challenges
Bioprinted organs soon could revolutionize clinical trials, transplantation, and regenerative medicine. But as Chris Lo reminds us in a new GlobalData report (1), several technical hurdles must be negotiated before biopharmaceutical companies can harness three-dimensional (3D) bioprinting for such purposes. BPI explores persistent printing problems and promising solutions below by analyzing Lo’s report alongside commentary from founding editorial advisory board member Bill Whitford (bioprocess strategic solutions leader at GE Healthcare Life Sciences), Lev Gerlovin (vice president in the life sciences…
Single-Use and Sustainability
What is sustainability? For some people, the special meaning of the word in an environmental context is how biological systems remain diverse and productive over time. Thus, sustainability is not just about saving resources or preventing pollution within a narrow context; it's more a long-term holistic approach to ecologically relevant activities. For other people, the term includes all environmental concerns, including those of immediate and/or nonbiological nature. Examples of such issues might involve a town's solid-waste disposal system or a…
Single-Use, Continuous Processing of Primary Stem Cells
Many potentially therapeutic products involve the culture of stem cells. Their commercial success depends on the development of scalable good manufacturing practice (GMP) technologies that can both robustly and cost-effectively produce very large numbers of cells. Through many improvements and innovations in bioprocessing operations over the years, fed-batch suspension culture has remained the most common mode for large-scale biopharmaceutical manufacturing. However, some recent events suggest that may be changing (1,2). For the culture and expansion of stem cells, large-format adherent…
Supporting Continuous Processing with Advanced Single-Use Technologies
It has been 10 years since the US Food and Drug Administration (FDA) articulated — in its guidance for process analytical technology (PAT) — the goal of “facilitating continuous processing to improve efficiency and manage variability” (1). Since that time, regulators and industry have worked toward applying continuous processing (CP) to all facets of pharmaceutical manufacturing, including bioproduction (2, 3). Last year, the European Medicines Agency (EMA) referred to CP in its draft Guideline on Process Validation, and the FDA…