March 2011

From The Editor

          Early on in the life of BPI we offered a few “closer” pages that we called “Defining Moments.” It was to be a forum for distinguishing between terms that are misused and for proposing new definitions for new approaches. In fact, because one particular topic came up again in a conference I attended this past January regarding the terms analytical and bioanalytical, we decided to revisit one of these entries from 2005 (with a few…

Model-Assisted Process Development for Preparative Chromatography Applications

Process modeling is a core technology in biopharmaceutical production that ensures faster, safer processing and process development. Developing a model involves quite some work, so it is important to use the model efficiently. We describe an industry example of how a mechanistic model is best used under process development and how it increases process understanding and performance. Present State of Process Development Biopharmaceutical process development relies heavily on experimentation and previous experience expressed as “rules of thumb” and empirical correlations.…

Building a Bridge to Commercial Success

The history of the biopharmaceutical industry is one of continual invention and reinvention, of business models that have adapted to weather uncertain product futures and shifting economic fortunes. Some of us followed the up-and-down (and often financially painful) progress of monoclonal antibodies toward their eventual commercial success — a wealth of experience to draw from as other classes of products make their way from laboratories and onto the market. The vast majority of regenerative medicines are still produced at laboratory…

Industry Educational Platforms Drive Commercialization Objectives

    Within the International Society for Cellular Therapy’s (ISCT’s) Industry Commercialization committee, Tracey Lodie, director of immunology and stem cell biology at Genzyme, chairs the Industry Education subcommittee, which was established in May 2010. In an interview with BPI, she described the subcommittee’s objectives and how they tie into the manufacturing, testing, and commercialization challenges for cellular therapies.   Reducing the Risk   “ISCT is working toward becoming an informational hub, acting as a resource to de-risk cell therapy…

Therapies of Tomorrow Require More Than Factories from the Past

Live cells are being incorporated as active agents and delivery vehicles for a broad range of emerging therapeutic strategies. Successful commercialization of a cell therapy requires more than proving its safety and efficacy to regulators. Ultimately a therapy must be commercially viable, allowing enough patients to be treated with an adequate financial margin to justify investment in it as a product. “Whether the cells used are universal (allogeneic) or patient-specific (autologous), it is unlikely to be wholly one or the…

Building from the Ground Up

    New treatment modalities — as transformative as they may be of our approaches to human healthcare — still need to be profitable for their developers, provide the sorts of returns desired by investors, and be accessible to patients financially. As many industry experts have told us, the venture capital climate these days is much different from that of the early, giddier days of monoclonal antibodies. And with criteria still-emerging around the world for how regenerative medicines are and…

Successful Commercialization Through Industry Collaboration

    Nearly a year ago, the International Society for Cell Therapies (ISCT) decided to integrate industry into its organization to build a stronger platform for commercializing therapies. Robert Deans, vice president of regenerative medicine at Athersys, was invited to serve as a leader of ISCT’s Industry Task Force, which aimed to identify industry roles in its organization. Within two months, the task force invited industry members and chartered a white paper (1) that described how ISCT should go forward.…

Working Together for the Future

Most individuals who choose to pursue a career in healthcare would say they do so because they are driven by a fundamental desire to help people. If you ask people why they decided to work in the field of regenerative medicine, many will tell you it’s because they believe it is the most exciting area of medical research and that it holds the greatest potential to transform medicine as we know it. The transformational potential of stem cells and regenerative…

Opportunities in Regenerative Medicine

Capitol Hill fly-in days (see the last page of this issue) … A focus of Google Ventures (www.google.com/ventures) … A favored new investment arena for GE’s CEO Jeffrey Immelt, the recently named head of President Obama’s economic recovery advisory panel, and Life Technologies’ Greg Lucier … Hardly a day skipped without a major news publication covering some exciting aspect of the science … The provocative cover of Wired magazine’s (www.wired.com/magazine) November 2010 issue … It all sounds like the stuff…

Distinctions Between Analytical and Bioanalytical Test Methods

Analytical methods used for characterization, release, and stability testing of biotechnological/biological products are often automatically referred to as “bioanalytical” methods by some in the field. Many times the term is used to distinguish between test methods applied to small-molecule chemical products and those for macromolecular, biologically based products. It seems sensible enough: We use analytical methods to test chemical pharmaceutical products, so aren’t test methods used for biopharmaceutical products therefore bioanalytical methods? Any way, who cares whether the term is…