When people decry “the lack of innovation” in biomanufacturing, I often find myself scratching my head. Maybe we’re working from different angles on the concept — for some, it might mean only those advances that are truly disruptive and replace a previous paradigm completely. But what I see in the biopharmaceutical industry currently is an explosion of new ideas, fresh approaches to established technologies, and incremental improvements that all add up to paint a dynamic picture of innovation indeed. “Creativity…
June 2023 Featured Report
Demystifying Mixed-Mode Chromatography Resins: Emerging Applications for Purification of Non-MAb Protein Therapeutics
Although monoclonal antibodies (MAbs) still represent the most common and most lucrative drug class in the biopharmaceutical industry, enthusiasm is growing for other recombinant-protein products. Clinical pipelines and even commercial portfolios are beginning to feature a breadth of nonantibody proteins and fragments as well as variations on the conventional-antibody theme: e.g., single-chain variable fragments (scFvs), fragment antigen-binding (Fab) products, and single-domain antibody fragments (also called nanobodies). By exploring such formats, drug developers hope to continue leveraging the efficacy advantages of…
Platform Optimization for Efficient AAV Purification: Insights from a CDMO
The number of clinical studies continues to increase for candidate gene therapies based on adenoassociated virus (AAV) vectors. Application of different AAV serotypes has enabled drug developers to target a large panel of tissues and to address a breadth of diseases — but with the drawback that each serotype necessitates a distinctive purification process. Such development work requires considerable resources and results in long process-development timelines, which can cause significant delays to entering clinical trials. Thus, gene-therapy companies and contract…
Intensification of Fab-Fragment Purification: Multicolumn Chromatography Using Prepacked Protein L Columns
Antibody fragments — such as fragment antigen-binding (Fab) domains, single-chain variable fragments (ScFvs), and heavy-chain variable domains (nanobodies) — have emerged as increasingly important therapeutic and diagnostic alternatives to full-length monoclonal antibodies (MAbs) for a multitude of diseases. Whereas MAb downstream processing is well established and easy to scale based on protein A capture, the purification of antibody fragments is just on the verge of standardized processing. The most promising candidate for effective capture of those containing a kappa light…