Cell Line Development

Putting It All into Perspective

    As part of The Automation Partnership’s “20 Years of Automated Cell Culture” series, science writer Sue Pearson interviewed Dr. John Birch, the chief scientific officer of biopharmaceuticals for Lonza Custom Manufacturing APIS based in Slough, UK. Birch has been with that company since 1996, Before that, he held senior technical positions at Tate and Lyle, GD Searle, and Celltech. Birch has a PhD in microbiology from London University, where he also spent a period lecturing before moving into…

Sequence Variant Analysis Using Peptide Mapping By LC–MS/MS

    Monoclonal antibodies are usually expressed in mammalian cell lines and are produced in several variants known as isoforms (1,–2). Microheterogeneity can result from posttranslational and enzymatic modifications as well as those caused by processing, alteration, storage, and incorrect translation of the target protein (1,3). Common sources of heterogeneity include Fc glycosylation, partial carboxypeptidase processing of heavy-chain (HC) C-terminal lysine residues (4), deamidation or isomerization (5), Fc methionine oxidation, hinge-region fragmentation (6), aggregation, and sequence variants. Sequence variants are…

Demonstrated Performance of a Disposable Bioreactor with an Anchorage-Dependent Cell Line

    Increased adoption of disposable storage vessels and mixing systems for biopharmaceutical manufacturing operations has provided economic and efficiency benefits to a number of life-science companies. Single-use technologies have reduced validation requirements, shortened turnaround times, eliminated cleaning regimes, increased the speed of set-up procedures, and facilitated the development of flexible manufacturing platforms. Many biomanufacturers have sought to extend those benefits into the field of cell culture by using disposable bioreactors. Here we describe work undertaken to develop and demonstrate…

Polymers and Additives Used in Fabrication of Disposable Bioprocess Equipment

The materials used to fabricate single-use processing equipment for biopharmaceutical manufacturing are usually polymers, such as plastic or elastomers (rubber), rather than the traditional metal or glass. Polymers offer more versatility because they are light-weight, flexible, and much more durable than their traditional counterparts. Plastic and rubber are also disposable, so issues associated with cleaning and its validation can be avoided. Additives can also be incorporated into polymers to give them clarity rivaling that of glass or to add color…

Isolation of Novel High-Osmolarity Resistant CHO DG44 Cells After Suspension of DNA Mismatch Repair

    Recent technological advances in cell line and bioprocess development have driven significant improvements in product titers and enabled scientists to accelerate product development timelines (1). Despite those successes, many limitations in developing cell lines for biotherapeutics remain. One example in fed-batch cultures is an apparent paradox: when cell growth is inhibited by high osmolarity after multiple additions of concentrated nutrients intended to enhance cell growth and protein production. Generation of novel host cells to overcome specific bottlenecks found…

Efficient Development of Stable High-Titer Cell Lines for Biopharmaceutical Manufacturing

Commercial manufacturing of therapeutic monoclonal antibodies (MAbs) commonly uses mammalian cells to generate large quantities of a drug. Identifying cell lines that stably produce high protein titers is, therefore, a critical part of biopharmaceutical development. Unfortunately, identifying suitable cell lines is traditionally a time-consuming, labor-intensive process. That’s because their productivity and stability can vary enormously, so large numbers of clones must be screened to find those with both the highest yield and a desired level of product quality (1). Cell-line…

Banking Parental Cells According to CGMP Guidelines

It is often difficult to accurately anticipate quality standards across today’s global regulatory environments. In recent years, quality expectations have increased as a result of public demand and government regulation while regulatory requirements are often written with limited specificity. Regulations pertaining to parental cell lines (cells engineered to become biotherapeutic production cell lines) is one such area where current regulations leave room for interpretation. Here we explore some important considerations for determining quality standards for parental cell lines. Cell Line…

Which Impeller Is Right for Your Cell Line?

    When growing microbes or animal cells in a stirred-tank reactor, it is critical to choose the impeller type that is best suited to your process. Select the wrong impeller, and you could make chop suey of your filamentous fungi. Pick the right impeller, and you could greatly increase yields of your fussy mammalian cultures such as Chinese hamster ovary (CHO) and Vero kidney epithelial cells. With a wide range of impeller designs to choose from, how do you…

Monitoring ATP Status in the Metabolism of Production Cell Lines

Development of industrial cell culture processes for production of recombinant proteins seeks high efficiency, reproducibility, and predictability. Usually the time allowed for process development is short, during which culture conditions and scale-up protocols must be defined so as to maximize cell productivity and yield while minimizing process scope and overall costs (1). Although scientific literature describes various methods that increase productivity of a cell culture by reducing and arresting cell growth or weakening cell physiology (2), the cells must be…

An Inoculum Expansion Process for Fragile Recombinant CHO Cell Lines

Development of robust inoculum expansion procedures from cell banks is crucial to successful upstream manufacturing processes. Typically, vial thaw and cell culture expansion processes follow well-established procedures. Certain recombinant cell lines, however, need extra attention and development efforts to optimize conditions for robust and reproducible vial thaw and further subculturing. Difficulties in thawing frozen cells might be clone specific or could originate from suboptimal conditions during freezing. Such conditions might not be known initially and could need further optimization at…