Featured Content

Pfizer looks to freezer farms and thermal shippers to make COVID vaccine distribution ‘doable’

Pfizer says it is prepped to overcome the logistical challenges of distributing its mRNA vaccine against COVID-19 as it submits an Emergency Use Authorization (EUA) to the US FDA. Today, Pfizer submitted a request to the US Food and Drug Administration (FDA) for Emergency Use Authorization (EUA) of BNT162b2, an mRNA vaccine candidate codeveloped with Germany’s BioNTech, against SARS-CoV-2. The news follows Phase III trial data showing the vaccine has an efficacy rate of 95% and marks a major milestone…

Updating the Economics of Biologics Manufacturing with 5,000-L Single-Use Bioreactors: A Paradigm Shift

Single-use technologies enable a flexibility and modularity effectively unattainable with more traditional stainless-steel technologies, particularly in upstream bioprocesses. Single-use bioreactors up to 2,000 L are employed largely in preclinical- and clinical-stage bioprocesses to leverage this flexibility. As products reach commercial maturity, scales larger than 2,000 L frequently become desirable to take advantage of economies of scale. With the typical upper limit of single-use bioreactors at 2,000 L, this has traditionally meant transfer to stainless-steel systems. The introduction of the Thermo…

Using Peptones to Achieve Diverse and Demanding Bioproduction Goals

As bioproduction requirements advance, it is critical to have consistent, high-quality media and supplements that continue to meet evolving industry needs. Peptones have been successfully used in bioproduction applications for more than 30 years to meet diverse and demanding production requirements. Their unique nutritional profiles and usage flexibility make peptones ideal components for creating a robust bioprocess. This Special Report will demonstrate the benefits of peptones and how they can be used to enhance process performance and consistently yield a…

challenges with exosome therapy

eBook: Challenges in Industrial Process Development of Exosome-Based Therapies: Characterizing and Managing Diversity

The traditional classification of extracellular vesicles (EVs) includes three types: exosomes, microvesicles, and apoptotic vesicles. Each type arises from a distinct origin and exhibits distinct characteristics. The problem is that their size ranges overlap and that the major surface proteins presented by exosomes also are present on the surfaces of microvesicles and apoptotic bodies. This makes it a challenge for process developers to identify the vesicle fraction that best serves a particular exosome therapy. Anion-exchange chromatography (AEC) can fractionate EVs…

Will In-House Manufacturing Capabilities Give Cell and Gene Therapy Developers Competitive Advantages?

Moderator Dan Stanton, with Felix Hsu and Joseph Rininger Cell and gene therapy (CGT) developers are seeking out manufacturing capabilities in response to tremendous industry growth. Unprecedented demand is driving facility expansions among major contract development and manufacturing organizations (CDMOs). But CGT companies increasingly are investing in their own production networks. This online panel during the 2020 BIO convention explored whether developing in-house manufacturing capabilities might secure product developers some competitive advantages as the CGT industry matures. Capacity Concerns Stanton…

A Challenge in Viral Clearance Determination: Estimation of Fifty-Percent Tissue Culture Infective Dose (TCID50) for Low Virus Concentrations

Performing viral clearance studies is an important safety element of manufacturing all biopharmaceuticals expressed from mammalian cells (1). Typically, viral clearance is described as a log reduction value (LRV) and calculated as the log10 of the ratio of input to output virus load. Amounts of virus load are calculated from the volume and concentration of input and output fractions. Virus concentration is often calculated as 50% of tissue-culture infective dose (TCID50) using the Spearman–Kärber (SK) equation (2, 3). In this…

Transforming Personalized Medicine into Off-the-Shelf Cell Therapies

Initial progress in cell and gene therapy has seen 12 advanced therapeutic medicinal products (ATMPs) become available on the market in 2019 for a range of conditions, from monogenic diseases to cancer. Despite such progress, development of clinically and commercially successful cell therapies presents manufacturability challenges and questions about bypassing patients’ immune systems. The availability of rapid sequencing and next-generation bioinformatics has made it possible to understand the mechanisms of disease better and accelerate development of therapeutic responses. The same…

Developing Process Control Strategies for Continuous Bioprocesses

Process control enables biomanufacturers to ensure that operating parameters are within defined specifications. A control strategy should be established during early stages of process development while process and product performance are being defined using risk-based methods such as quality by design (QbD) and process analytical technologies (PATs). Confirming process control as an essential part of product development creates greater process knowledge and understanding and provides the first steps toward process optimization. By understanding how process performance relates to product quality,…