Cell Therapies

Implementing Custom Single-Use Solutions for Cell Therapy Production

Cellular therapy continues to expand and gain momentum, as evidenced by the growing number of companies and clinical trials in the field each year. Early potential therapies were developed solely by investigators without communication or input from manufacturing experts. That communication gap led to numerous setbacks as potential products were developed without roadmaps for feasible manufacturing scale-up (or scale-out). Contributions from members of the cell therapy community over the past few years have significantly improved the situation in the form…

Scaling Up Stem Cells

    Cell-based products are becoming increasingly important as potential biotherapies. Cell therapy is predicted to have a huge impact on the healthcare sector over the coming decades. Stem cells, in particular, are investigated as potential treatments for a diverse range of applications (such as heart disease and metabolic and inflammatory disorders) in which they might be used to restore lost biological functions. The cell therapy industry is starting to mature. Several emerging companies are now supporting late-stage clinical trials,…

Standards Can Help Bring Cell Therapy Products to Market

Companies trying to market cell therapy products face a number of challenges in communicating highly technical knowledge, understanding the nature and complexity of their products, and trying to understand the global regulatory environment within which they must operate. The role standards development organizations (SDOs) play is key to overcoming some of those challenges through a standardization process. The British Standards Institution (BSI) sits at the forefront, developing a number of documents that will increase the chances of cell therapies for…

Improve Process Uniformity and Cell Viability in Cryopreservation

Cell therapies and related cell-based technologies constitute an emerging, fast-growing market with a total value expected to exceed US$100 billion by 2019 (1). Cell therapy is defined as the process of introducing cells to a patient’s tissue for disease treatment. These therapies generally require cryopreservation to maintain sufficient product quality and shelf life. As a common practice, cell therapy manufacturers use controlled-rate freezers to optimize cooling profiles. The goal is to preserve final products in cryopreservation media with the highest…

“Hard Cell”: Potency Testing for Cellular Therapy Products

Potency testing is defined in 21 CFR Part 600.3(s) as “the specific ability or capacity of the product, as indicated by appropriate laboratory tests or by adequately controlled clinical data obtained through the administration of the product in the manner intended, to effect a given result” (1). Potency measurement is especially important for complex products such as cellular therapies (CTs). It is considered an essential aspect of the quality-control system for a CT drug substance and drug product. It is…

Quality Control During Manufacture of a Stem Cell Therapeutic

Development and manufacturing of a therapeutic stem cell product requires extensive quality control (QC) to ensure the identity, quality, and safety of the cells. Here, we describe our QC pipeline to optimize the manufacturing of our MultiStem adherent stem cell product, which is in clinical trial testing for stroke, acute myocardial infarction, inflammatory bowel disease, graft versus host disease, and solid organ transplantation. Screening for growth, marker expression, immunosuppression, and multipotent differentiation — in combination with “-omics” screening for gene…

Top 10 Regenerative Medicine Stories of 2011

    Geron Ends Stem Cell Programs in November: Big hope for a spinal cord injury trial, big loss for a field — the most discussed news of the year. Despite the company’s official comment citing a “purely business decision,” many professionals think that a “lack of impressive preliminary results” also played a role. The company is now seeking a partner to take over that trial. The effect on the cell therapy industry remains to be seen — but for…

Emerging Challenges in Cell Therapy Manufacturing

    The introduction of recombinant proteins and monoclonal antibody (MAb) products revolutionized the treatment of many diseases, including diabetes, rheumatoid arthritis, multiple sclerosis, Crohn’s disease, cardiac disease, and cancer. These highly specific biologic therapies provide patients with life- saving approaches that are not possible with small molecules. MAbs in particular are a unique class of biopharmaceutical products that interact with and activate components of the immune system to provide such therapeutic benefits as tumor destruction by antibody-dependent cell-mediated cytotoxicity…

Meeting Regulatory Challenges for Cell-Based Therapies

    Many companies follow a general rule when assembling regulatory packages for presenting new biologics: Accentuate the aspects of your new biologic that mimic approved therapies. For companies working on cell-based therapies, however, that is a challenging task. The industry lacks established models, and the current European Medicines Agency (EMA) regulatory definition of a cell-based therapy is simply “an advanced therapy medicinal product” (ATMP) (see EMA guidance box). Regulations for cell therapies cannot always be compared directly with those…

Mastering Industrialization of Cell Therapy Products

    Incomes currently generated by the global cell therapy market are estimated to be ~US$400 million. That value represents 10 main products, some of which have been on the market since the late 1990s (e.g., Dermagraft and Apligraf, with >$100 million yearly revenues each). Cell therapy product revenues are low compared with those of the biopharmaceutical market (~$100 billion). But the market’s growth potential and clinical pipeline are leading to higher expectations. The sector’s compound annual growth rate (CAGR),…