Cell Therapies

Toward Defined Culture Conditions for Pluripotent Stem Cells, Part 2

    At the UK National Stem Cell Network ‘s annual meeting in York, UK on 31 March 2011, a workshop organized by STEMCELL Technologies workshop addressed defined media for human stem cell culture. As illustrated in Part 1 (October 2011), it is critical to understand the pathways that maintain genetic stability during hES self-renewal, which is a prerequisite for all clinical applications. Because physiological DNA damage can take place during normal cellular proliferation, and accumulation of unrepaired DNA could…

Toward Defined Culture Conditions for Pluripotent Stem Cells, Part 1

    On 31 March 2011, ~50 delegates attended a workshop organized by STEMCELL Technologies on implications of standard defined culture conditions for embryonic and induced-pluripotent human stem cells as part of the annual meeting of the UK National Stem Cell Network in York, UK. Researchers from both academia and industry need to develop a better understanding of those implications. Our company wanted to give them a better appreciation of key challenges facing ancillary material suppliers who manufacture standard defined…

Optimizing Cryopreservation for Therapeutic Cells

    Biopreservation suppresses degradation and enables postpreservation recovery of structure, viability, and function. Although there are several biopreservation techniques (indicated in “Biopreservation Methods” box), most laboratories use either standard cryopreservation protocols (the far majority) or vitrification (much more limited in broad systems application) when freezing cells for research and clinical applications. Isopropanol freezing containers such as the Mr. Frosty device from Nalgene Labware have made cryopreservation easier in many applications, and controlled-rate freezers allow users to program and manipulate…

Where Will Technology Take Cell Therapy?

    The cell therapy industry’s biggest challenge is in manufacturing. Technologies are needed to support expansion of large numbers of cells for commercial production. A number of sources are presenting options: e.g., standard two-dimensional tissue cultures that “grow up” to Corning HYPERFlask and CellSTACK or Nunc Cell Factory systems; hollow-fiber–based equipment; and disposable bags and traditional stirred-tank bioreactors. Each has its place and application, but how can companies choose among them? Where and when do they initiate scale-up process…

Meeting the Challenges in Manufacturing Autologous Cellular Therapies

Personalized medicine is a promising new approach to disease treatment. The ultimate in personalized medicine is a cellular therapy manufactured specifically for an individual patient using his or her own cells. But this autologous approach to generating immunotherapies has unique manufacturing challenges. Each patient receives an individual product batch, which needs to be manufactured, tested, and released. So thousands to tens of thousands of batches could be made for each indication every year. Given the personalized nature of these therapies,…

Industry Roundtable

    With one eye on commercialization and the other on monitoring every-day challenges, cell therapy manufacturers are asking critical questions about process efficiency, ensuring quality, and satisfying regulatory demands. In this “virtual” roundtable discussion (participants were asked questions separately), cell therapy industry representatives answer key questions in hopes of broadening understanding about this new class of biopharmaceuticals. Participants in this roundtable are Timothy Fong, PhD (director cell therapy, Becton Dickinson Biosciences), Annemarie Moseley, PhD, MD (CEO, Repair Technologies), Firman…

Addressing Business Models, Reimbursement, and Cost of Goods

The early ISCT organization provided a powerful forum for sharing solutions, developing standards, and moving the emerging concepts in cell therapy forward as the field grew up and out of academia. Currently, the ISCT organization is uniquely positioned to facilitate sharing of best practices, standards, and strategies across the for- profit cell therapy industry through its Commercialization committee. The Business Models, Reimbursement and CoGS (cost of goods sold) subcommittee of the ISCT Commercialization committee was formed to address several key…

Industry Educational Platforms Drive Commercialization Objectives

    Within the International Society for Cellular Therapy’s (ISCT’s) Industry Commercialization committee, Tracey Lodie, director of immunology and stem cell biology at Genzyme, chairs the Industry Education subcommittee, which was established in May 2010. In an interview with BPI, she described the subcommittee’s objectives and how they tie into the manufacturing, testing, and commercialization challenges for cellular therapies.   Reducing the Risk   “ISCT is working toward becoming an informational hub, acting as a resource to de-risk cell therapy…

Building from the Ground Up

    New treatment modalities — as transformative as they may be of our approaches to human healthcare — still need to be profitable for their developers, provide the sorts of returns desired by investors, and be accessible to patients financially. As many industry experts have told us, the venture capital climate these days is much different from that of the early, giddier days of monoclonal antibodies. And with criteria still-emerging around the world for how regenerative medicines are and…

Working Together for the Future

Most individuals who choose to pursue a career in healthcare would say they do so because they are driven by a fundamental desire to help people. If you ask people why they decided to work in the field of regenerative medicine, many will tell you it’s because they believe it is the most exciting area of medical research and that it holds the greatest potential to transform medicine as we know it. The transformational potential of stem cells and regenerative…