Cell/Gene Therapies

Using 3D Imaging To Understand Sterilizing-Grade Filtration of Liposomes

Sterilizing-grade filtration is an essential operation for biomanufacturing. It ensures that drug substances are free from microorganisms at the end of a downstream process. The COVID-19 pandemic has highlighted the need for high-quality therapies to be manufactured efficiently at scale, with particular focus on the need for multiple vaccines to be developed, produced, and distributed globally (1). Some vaccines have used lipid nanoparticle encapsulation technology, which also has potential for use in gene therapy development in the near future. Lipid…

Applying Quality By Design Principles to AAV Manufacturing

The expectation to apply quality by design (QbD) principles to new manufacturing processes has been voiced by regulatory authorities for over a decade (1, 2). They recognize that because of the generally low patient populations for emerging therapies, such as adeno-associated virus (AAV)-based therapeutics, available chemistry, manufacturing, and controls (CMC) information might not be as exhaustive as for other biologicals such as monoclonal antibodies (3, 4). Other challenges include the need for rapid development to address currently unmet medical needs…

A Plug-and-Produce GMP Plant for Cell and Gene Therapies Part 2: Rapid Deployment of a Commercial-Scale Facility

Extending the use of approved advanced-therapy medicinal products (ATMPs) to the tens of thousands of patients who could benefit from such treatment requires a 10- to 100-fold production scale-up. Given that each autologous ATMP batch yields one dose for one patient, expanding production throughput is not a question of boosting volume, but rather of amplifying single manufacturing runs. That is, scale-up is actually scale-out, and the dimensions of the ensuing endeavor extend beyond what occurs in the cleanroom. Coupled with…

Future Supply-Chain Needs for Allogeneic Cell Therapies: Why Strategic Partnerships Are Critical

Allogeneic products are an attractive option for cell-therapy developers because multiple batches can be manufactured using apheresis material collected from one healthy donor — and because the resulting therapies could be made available as off-the-shelf products. The appeal of this approach is apparent from growth in allogeneic-therapy development. According to the Alliance for Regenerative Medicine, the number of clinical trials for allogeneic cell-based cancer treatments has increased by 30% over the past five years. Early in 2022, allogeneic candidates accounted…

Raman Spectrometric PAT Models: Successful Transfer from Minibioreactors to Larger-Scale, Stirred-Tank Bioreactors

Spectroscopic sensors are powerful tools for bioprocess monitoring within the process analytical technology (PAT) initiative of the US Food and Drug Administration (FDA). The PAT framework includes process understanding based on scientific background with the aim of monitoring and controlling critical process parameters (CPPs) that influence critical quality attributes (CQAs) of final biological products. The driving force for PAT implementation is a need to realize consistent product quality, process intensification, and real-time manufacturing control (1, 2). Using real-time spectroscopic measurements…

Deriving Mesenchymal Stromal Cells from Umbilical Cord Lining and Wharton’s Jelly: A Comparative Study of Extraction Methods and Culture Media

Mesenchymal stromal cells (MSCs) are multipotent, self-renewing progenitor cells that can differentiate into adipocytes, chondrocytes, and osteocytes (1). Cultured MSCs are plastic-adherent and spindle-shaped, and they express cell-surface markers CD44, CD73, CD90, and CD105, but not CD14, CD34, CD45, CD11b, CD79a, CD19, or HLA-DR (2, 3). First isolated from bone marrow (BM), human MSCs have been investigated extensively in clinical studies. MSCs also have been isolated from adipose tissue (4) and peripheral blood (5). Perinatal organs and tissues such as…

Overcoming Challenges in Viral Vector Production for Gene Therapy Using HEK Cell Cultures

An estimated 300 million people worldwide live with rare diseases, and over 70% of such disorders are caused by genetic mutations (1, 2). Cell and gene therapies offer hope and potential cures for many previously untreatable diseases. Accordingly, the global gene therapy market is expected to be worth USD 5.02 billion by 2028, a significant growth from USD 1.46 billion in 2020 (3). Manufacturing gene therapies will be a key challenge over the next two decades. But just a few…

Bringing Gene-Therapy Product Quality Into Focus

Regulatory agencies are scrutinizing gene-therapy product quality more closely than ever, yet such therapies still are produced in small batches and at high costs. Thus, drug companies are struggling to make safe and efficacious gene therapies available to patients. In an April 2022 presentation, Tim Kelly (chief executive officer of Oxford Biomedica Solutions, OXB Solutions) emphasized the importance of addressing both process output and product quality when manufacturing adenoassociated virus (AAV)-based gene therapies. Such an approach requires deep expertise and…

Improving Viral Vector Manufacturing: Modeling Costs to Help Optimize Processes

Manufacturing costs remain high for gene therapies delivered by adenoassociated virus (AAV) vectors. The biopharmaceutical industry must minimize such expenses because they account for significant proportions of the high prices that patients pay for treatment. During a June 2022 webinar, Emmanuelle Cameau (leader for cell and gene therapy strategic technology partnerships at Pall Corporation) joined Maxime Dumont (cell and gene therapy product manager at webcast sponsor Polyplus-transfection) to describe their companies’ efforts to model AAV manufacturing costs. Cameau and Dumont…

Mass Photometric Analysis of Adenoassociated Virus Capsids

Current production processes for gene therapies based on adenoassociated virus (AAV) vectors generate many empty capsids. That problem complicates vector purification and diminishes product safety and quality. In a June 2022 webinar, Gareth Rogers (product manager at Refeyn Ltd.) observed that developers could benefit significantly from analytical instruments that assess empty-to-full (E:F) capsid ratios rapidly. He explained how the SamuxMP mass photometry system (Photo 1) could address such needs. Kirsty McManus (senior scientist in AAV characterization at Pharmaron Gene Therapy)…