Facility Design/Engineering

Outsourcing Facility Safety for Biomanufacturing

As the life-science industry increasingly outsources noncore functions, some companies are finding that managing the expanding web of safety and environmental requirements associated with various functions is, in turn, growing vastly more complex. As multiple third parties handle numerous noncore activities, the risk — and headaches — of monitoring them effectively is a growing challenge by any standard. At first glance, the lowest-risk solution for many organizations may seem to be managing associated safety programs with in-house personnel and programs.…

A Sustainable, Single-Use Facility for Monoclonal Antibody Production

Pierre Fabre, the second largest independent pharmaceutical group in France, recently opened a new facility to expand its monoclonal antibody (MAb) production for clinical supply. The Antibody Biotechnology Unit (ABU) facility was designed to provide needed flexibility for adapting to various process and capacity changes, so it includes state-of-the-art single-use technologies. The facility was also built with sustainability in mind to minimize the company’s environmental footprint. The company integrated this plant into an existing antibody research and development (R&D) center,…

Cost-Effectiveness and Robustness Evaluation for Biomanufacturing

As the biotech sector has matured, it has come under increasing economic and regulatory pressures for continuous improvement in both drug development and manufacturing. As a result, assessing the value potential of alternative strategies has become critical to decision-making in areas such as bioprocess and facility design, capacity sourcing, and portfolio selection. Related decisions typically involve large cash expenditures and thus have a direct bearing on the feasibility of business units and whole companies. Figure 1:  () Making such decisions…

Broadening the Baseline

When the editors of BPI asked us at BPSA to put together a content-rich article on single-use issues, we were happy to do so. Our challenge was how to bring in multiple viewpoints about the growing business of single-use that would be a “quick read” for the BPI audience. The answer: an expert colloquy. Represented here are several of the most qualified industry spokespersons in single-use — all are members of BPSA and speak as directors of the alliance. Their…

Broadening the Baseline

When the editors of BPI asked us at BPSA to put together a content-rich article for the single-use supplement, we were happy to do so. Our challenge was how to bring in multiple viewpoints about the growing business of single-use that would be a “quick read” for the BPI audience. The answer: an expert colloquy (a “conversational exchange or topical dialogue”). Represented here are several of the most qualified industry spokespersons in single-use — all are members of BPSA and…

A Risk-Based Life-Cycle Approach to Implementing Disposables for Facility Flexibility

Plastic-based, single-use, disposables has been prevalent in biotech/pharmaceutical manufacturing processes for decades. Examples of such technologies include filters, gaskets, tubing, sampling bags, carboys, and ultrafiltration/diafiltration (UF/DF) capsules. In recent years, single-use technology has made great leaps in broadening the range of options and applications available. Disposable bioprocess containers are now widely used for applications such as media/buffer preparation and storage, bioreactors and cell culture operations, in-process intermediate containers for manufacturing operations, final drug substance/product containers, and so on. Customized solutions…

Advances in Sensor Technology Improve Biopharmaceutical Development

Today’s biomanufacturing operations require constant management of biopharmaceutical process attributes throughout process development and production. Continuous online measurements of pH, dissolved oxygen (DO), oxidation–reduction potential (ORP), and conductivity (Figure 1) allow real-time industrial process monitoring and adjustment. These functions are crucial to process improvement studies and accurate, reliable manufacturing of high-quality products. Figure 1: () “In the pharmaceutical industry, it is extremely valuable to see how an attribute changes with time and correlate that change with parts of the process,”…

Single-Use Technology and Modular Construction

To enable broad, global access to life-saving biopharmaceutical products, our industry is facing significant pressure to reduce the overall cost of manufacturing and enable local manufacturing where possible. Combined with growing markets outside the United States and Europe and development of high-titer, high-yield processes, that pressure has led to a shift in the industry’s approach to facility design and construction. Today’s biopharmaceutical production facilities must be flexible, cost effective, and readily constructed with minimal capital investment and construction timelines. As…

Supporting Continuous Processing with Advanced Single-Use Technologies

It has been 10 years since the US Food and Drug Administration (FDA) articulated — in its guidance for process analytical technology (PAT) — the goal of “facilitating continuous processing to improve efficiency and manage variability” (1). Since that time, regulators and industry have worked toward applying continuous processing (CP) to all facets of pharmaceutical manufacturing, including bioproduction (2, 3). Last year, the European Medicines Agency (EMA) referred to CP in its draft Guideline on Process Validation, and the FDA…

Global Evolution of Biomanufacturing

Biomanufacturing of human therapeutics is beginning a global transformation. New technologies, improved processes, the emergence of biosimilars, and growing worldwide demand for vaccines and biologic drugs to serve local populations are driving this transformation. Over the next few years, diverse new markets will open, creating opportunities for a range of companies seeking to enter the field while putting pressure on established biomanufacturers to reassess their operating models. Many traditional barriers-to-entry in biomanufacturing are diminishing. Yet other challenges — including access…