Market experts recommend automated filling systems for drug developers seeking to reach the next level in drug-substance management. Many companies are starting automation initiatives, which suggests an overall trend towards automated filling. The stakes are high. Increased process deviation in fluid management can lead to increased loss of valuable biopharmaceutical products. Automated and standardized aliquoting of biopharmaceutical drug substances into single-use bioprocess containers simplifies the manufacturing process while improving throughput, speed, and filling accuracy. Fill out the form below to…
Fill/Finish
Introduction: Practicalities of Aseptic Processing for Modern Biological Drug Products
With proliferating modalities entering and moving through the biopharmaceutical industry’s development pipeline, drug presentations are expanding and diversifying to accommodate. Even “traditional” biologics such as monoclonal antibodies (MAbs) have evolved in their formulation and packaging, with the emergence of highly concentrated drug products, prefilled syringes, and devices that enable patients to inject themselves at home rather than visiting a local clinic for drug infusion. Patients, clinicians, and payers are demanding convenience and cost-effectiveness as well as safety, quality, and efficacy…
Application of an Effective In-Line Analytical Instrument for Biopharmaceutical Development and Manufacture
The rapid advancement and competitiveenvironment of the modern biopharmaceutical industry, accompanied by the need for continuous quality improvement, demand robust analytical instruments. Analytical technology is one key factor contributing to the quality and safety of finished products. Ongoing improvements in analytical instruments are needed to address new challenges, including specificity of target substances, high complexity of matrices, and multiple production stages with a number of input and output parameters and peculiarities. Those factors point to the demand for a versatile…
Grow Your CDMO with Automated Aseptic-Filling Workcells
Contract development and manufacturing organizations (CDMOs) and biopharmaceutical companies are facing shortages in capacity for production of clinical trial material. Even as large-volume commercial biofilling capacity has increased significantly since the beginning of the pandemic, drug developers are forced to use inefficient and risky filling methods that leave them with unmet demand. John Harmer (Cytiva’s strategic initiatives leader for aseptic filling) addressed the need for flexibility and capacity for CDMOs and their clients by introducing two gloveless robotic isolator technology…
eBook: Drug-Delivery Devices — Measurement-System Analysis Using Gauge R&R Studies
When a biological product requires a specialized delivery device, the resulting combination product can introduce new types of quality evaluation. Product development brings together regulatory requirements for biologics and drug-delivery systems, and for many people on the biopharmaceutical side, that includes a number of unfamiliar terms, processes, and procedures. Among those are gauge repeatability and reproducibility studies for measuring variations that arise from measurement devices and the operators using them. This eBook introduces the concept of attribute-data gauge repeatability and…
Advanced Materials in Bioprocessing
The choice of materials to develop and process biopharmaceutical products has a significant influence on the quality and purity of those products. Biomanufacturers have benefited from their use of both stainless-steel and single-use materials for individual process components and entire process systems. But careful attention must be paid to material characteristics. Working with different single-use plastics, for example, means that biomanufacturers must take product-contact issues into account, including the risk of extractables and leachables. To celebrate its 20th anniversary, BioProcess…
Formulation, Fill and Finish of Lentiviral Vectors Part 2: Key Decisions and Risk Management
Over the past few years, Oxford Biomedica UK has developed and implemented its fill–finish platform at its 84,000-ft2 “Oxbox” manufacturing facility constructed in 2019. The first phase of development (45,000 ft2) houses four segregated suites for producing bulk viral-vector drug substance (VS) where closed systems and bioburden-control processes apply, and two fill–finish suites for viral-vector drug product (VP) in aseptic processing. The first of the fill and finish suites is expected to be approved in the first half of 2022.…
Aseptic Considerations in Formulation, Fill and Finish: Choosing Between Barrier and Isolator Technologies
Biological drug substances are constituent in a wide range of medicinal products with an even broader spectrum of applications. Those include autoimmune-disease treatments (e.g., for arthritis), vaccines, and recombinant therapeutic proteins (e.g., for cancer treatment). What such products all have in common is that they are manufactured using biotechnology and other cutting-edge technologies. Biologics are not as physically robust as their small-molecule counterparts. Hence, during biomanufacturing processes, these complex molecules present a number of challenges. Some of the typical shared…
A Holistic Approach: Bridging the Gap Between Suppliers and Biomanufacturers
How can biopharmaceutical manufacturers expect their suppliers to deliver what the industry wants and needs if it doesn’t communicate those desires? Without industry input, biotechnology suppliers are developing technologies “blindly.” Despite their having delivered great value over the years, together the greater community can do better. Aligned industry input is a vital element in the development process. Here we describe how two BioPhorum workstreams focused on drug-product development have worked to facilitate these communications. Last summer, the container–closure integrity (CCI)…
Closed-System Transfer Devices: Collaboration Provides Tools to Guide Compatibility and Stability Testing Strategy
Ever since the first biopharmaceutical product (biologic) was approved in the 1980s, companies have developed protocols and tests to ensure that such products are safe and effective. Biologics are very different from traditional small-molecule drugs, with unique risks inherent to their manufacturing processes. Biopharmaceutical formulations often present as complex mixtures that can be sensitive to heat, light, and many other factors, all of which must be monitored and assessed. However, until recently, developers worked mostly independently, with only their own…