MAb

Rapid Assessment of Vaccine Potency

The global vaccine market is growing annually by 16% and is expected to reach $21 billion by 2010 (1). Much of the predicted growth of this market is expected to come from the introduction of new vaccines, either against diseases for which no vaccine currently exists or as second-generation products to replace existing ones. Much research is still centered on developing vaccines to prevent infectious diseases caused by microbial and viral pathogens. This segment is being fueled by a number…

Setting the Stage

Much has already been written lately about addressing the so-called “downstream bottleneck(s).” A number of companies are leading the way toward developing products and platforms for reducing both the costs and the time required for downstream processing. Our task with this special issue was to provide a state-of-the-art update on these activities — but as always, within a limited number of pages allotted. The primary issue behind this bottleneck debacle is to address purification challenges posed by aggregation in cell…

Development of a High-Capacity MAb Capture Step Based on Cation-Exchange Chromatography

Protein A affinity chromatography is traditionally used as the capture step for monoclonal antibodies (MAbs) (1,2,3). It yields high purity because only the fragment-crystallizable (Fc) region of an antibody (IgG1 or IgG2) or Fc-containing fusion protein can bind to the protein A ligand. The resulting specificity provides substantial reduction in impurities such as host cell proteins (HCPs) and DNA (4,5,6,7,8). The dynamic binding capacity of protein A chromatography resins is generally ≤40 g/L and depends highly on residence time because…

Production of Recombinant Whole-Cell Vaccines with Disposable Manufacturing Systems

Live whole-cell bacterial products have been used as vaccines for many years, and there are currently three such products licensed on the market. Over recent years, however, interest has renewed in this type of product as a delivery system for novel recombinant therapies and vaccines. A number of different organisms have been proposed, such as Escherichia coli and Salmonella species, which might have applicability for such applications. Vaccine applications tend to relate to the potential for low-cost orally delivered products…

Novel Vaccines and Virology

Vaccines have been around a long time — longer than any other biologic medical products. Since the 1700s, when a British doctor inoculated people against smallpox using Variolae vaccinae (cowpox virus), we’ve referred to such immunizing treatments as “vaccines.” Most children in developed countries grow up knowing there will be occasional “vaccinations,” usually injections, required to get into school and stay there (which may or may not seem like a great thing, depending on who you talk to). Similarly, people…

21st Century Vaccine Manufacturing

Establishment of standard production platforms can help vaccine development move a step closer to the commercial, technical, and regulatory benefits increasingly enjoyed by developers of monoclonal antibody (MAb) products. Three recent advances especially will assist vaccine manufacturing development: rapid analytical methods to support evaluation of process design and provide in-process control; and the establishment of supply chains and vendors across Asia for bioprocessing equipment and consumables that meet the highest international standards. Whereas some workers in the field may consider…

Scaling Up a CHO-Produced Hormone–Protein Fusion Product

    Many biotechnology companies recognize the powerful benefits of increasing product titer early in product development as a strategy to minimize manufacturing costs, scale, and the duration necessary to produce clinical supplies and achieve product commercialization. Additional benefits include minimizing or completely avoiding significant regulatory delays to market that can be caused by major process technology changes (such as cell line and product quality changes). Recently, another significant benefit has been realized too: Smaller, more productive and efficient 2,000-L…

The Vaccine Renaissance

The global vaccine industry has undergone a dramatic and well publicized rebirth. Near the end of the 20th century, it faced an uncertain future with increased pricing pressures and liability challenges for marketed vaccines. Many long-standing members of the industry chose to scale back their R&D efforts or abandon them altogether. Today, however, the landscape has changed. Because of a confluence of positive factors (advancements in science and technology, greater appreciation for the role of vaccines as antibiotic resistance increased,…

Use of Membrane Technology in Bioprocessing Therapeutic Proteins from Inclusion Bodies of

The ultimate goal of recombinant fermentation research is cost-effective production of desired proteins by maximizing volumetric productivity (to obtain the highest amount of protein in a given volume in the least amount of time). Bioprocessing for recombinant proteins using genetically modified organisms requires a stable, high-yielding recombinant culture, a highly productive fermentation process, and cost-effective recovery and purification procedures. Escherichia coli has been a widely used host for expression of recombinant proteins (1). Its advantages lie in the enormous data…

Pursuing Excellence

      As new medicines, vaccines, biomaterials, and biofuels move through development, companies often face some of their toughest hurdles in moving from benchtop to production-scale processes. These are not only technological, but as technology advances it becomes more difficult to find experienced talent to make use of it. Some regional endeavors, such as the National Biomanufacturing Centre in the United Kingdom and the Massachusetts Biomanufacturing Center in the United States are pooling skills and resources to help companies…