Manufacturing

Innovations in Cell Culture, Sensor Technology, and Process Control: Preparing for Industry 4.0

To celebrate the 20th anniversary of BioProcess International, industry suppliers were asked to respond to a questionnaire about the important technologies, trends, and manufacturing innovations that have shaaped their companies and the entire industry over the past two decades. What has been the most important scientific or technological innovation in the past 20 years of bioprocessing? I have been in the industry since the mid-1990s, and clearly the most significant evolution in biomanufacturing has been the widespread implementation of single-use…

Bioprocess Monitoring and Control: New and Continuing Needs in the Biopharmaceutical Industry

Equipment vendors, technology developers, and service providers have played an integral role in promoting innovation in the biopharmaceutical industry, from upstream production to final packaging and distribution of biological products. To enrich our understanding of the past 20 years of bioprocessing, BPI distributed questions to supplier companies. Below, Nick Pittman and Magnus Wetterhall of Waters Corporation reflect on advances in — and remaining opportunities for — process analytical technologies (PATs). What Innovations Have Been Most Formative to the Past 20…

Proud Partners: Advancing Technologies Enable Collaboration and Innovation

Recent global events have demonstrated a growing demand for biologics to be made rapidly, cost-effectively, and in high volumes. There has been an urgent need to develop highly flexible and cost-effective next-generation biomanufacturing solutions that provide high yields of therapeutic proteins. Novel technology platforms such as single-use bioreactors and continuous bioprocessing technologies have contributed greatly to improvements in product quality and productivity while reducing cost of goods. Continuous Bioprocessing Expands Historically, continuous-culture processes were used for production of low-titer, low-stability,…

Challenging the Norms of Facility Design and Innovation

The past 20 years have spurred new technologies that enable flexible solutions to changing market demands. Small-scale tools, improved analytical methods, and innovative facility designs are among the notable breakthroughs. To enrich our understanding of the past 20 years of bioprocessing, BPI distributed questions to supplier companies. Below, Elyse Vlahos (director of process engineering at Genesis AEC) provides her perspective on innovation and future industry developments. Innovation and Regulations What have been the most important technical innovations over the past…

Continuing Commitments to Quality Reflections on Contract Manufacturing Organizations and Success in the Biopharmaceutical Industry

Nick Green has worked in the global pharmaceutical and healthcare-services industries for more than 35 years, including significant experience with third-party manufacturing of biological products. He currently serves as president and chief executive officer (CEO) of Avid Bioservices, a contract development and manufacturing organization (CDMO) that focuses on biopharmaceuticals derived from mammalian cell cultures. He has held senior leadership positions at several life-science companies. That includes time spent as president and CEO of Therapure Biopharma, Evolve Biologics, and Rhodia Pharma…

Surveying the Biosimilars Regulatory Landscape

BPI’s history coincides with that of biosimilars development. Although nonpeptide biosimilar products did not begin receiving commercial authorization until the 2010s, health authorities and drug makers already had been exploring the complex concept of biosimilarity. In the May issue of BPI’s first volume, Theresa L. Gerrard (then an independent consultant who also had been director of the Division of Cytokine Biology at the US Food and Drug Administration Center for Biologics Evaluation and Research, FDA CBER) wrote: The potential for…

Increasing the Efficacy and Impact of Cell and Gene Therapies

Decades of research into cell biology, gene editing, and biomanufacturing have culminated in the commercialization of more than a score of cell and gene therapy (CGT) products. In the United States, most of those are hematopoietic progenitor cells (HPCs) isolated from human umbilical cord blood. As of July 2022, the US Food and Drug Administration has approved five products based on chimeric antigen receptor (CAR) T cells, all since 2017, and two viral-vector gene therapies, beginning with the 2019 authorization…

Taking a Distinctive Path Reflections on the History of Gene Therapy Development

For the past 20 years, I’ve been a committed and interested partner to developers of cell and gene therapies (CGTs). I’ve participated in the highs and lows of the industry. Initially, we looked to the development of monoclonal antibody (MAb) therapeutics for a roadmap to anticipate what would occur in the CGT field. It was thought that manufacturing processes would consolidate upon a single “winning” platform process and that both scale and productivity would be increased primarily by focusing on…

Transfection: Past, Present, and Future

The science behind transfection spans from calcium phosphate precipitation to newer methods that are easier to perform, more efficient, and consistent. Mirus Bio strives to perfect gene delivery to cells in culture and support different applications within the life sciences community. The company’s capabilities include RNA interference (RNAi), clustered regularly interspaced short palindromic repeats (CRISPR), and viral vector development for cell and gene therapies with the launch of TransIT-VirusGEN GMP transfection reagent and kits for supporting clinical and commercial adenoassociated…

A Biotech Revolution

To celebrate the 20th anniversary of BioProcess International, Tony Hitchcock (technical director at Charles River Laboratories) participated in a supplier survey on important bioprocess innovations, technologies, and advancements over the past two decades. He has over 38 years of experience in the biotechnology industry, specifically in production of critical starting materials and complex biologics for clinical trials. What is the most important bioprocessing innovation in the past 20 years? The emergence and adoption of single-use production systems has been important…