Manufacturing

Multimodal Facility Design for Cell and Gene Therapies

Cell and gene therapies (CGTs) are progressing rapidly through development pipelines and advancing through clinical trial phases. Manufacturing capacity will need to be sufficient when such products are approved for commercialization. Thus, biomanufacturers are seeking ways to leverage multimodal facilities. I spoke with Stephen Judd, who is principal process engineer for biologics and cell and gene therapy at DPS Group, an engineering and construction management consultancy. We talked about design considerations for multimodal facilities, how such facilities contribute to overall…

Elevating Your Pharmaceutical Facility to the Next Digital Plant Maturity Level

Pharma 4.0 technologies, offshoots from the Industry 4.0 model, focus on introducing new technologies for increased levels of digitalization within the pharmaceutical manufacturing industry. Many companies hesitate to embrace the Pharma 4.0 concept fully even though digitalization efforts are leading the way toward new levels of efficiency and productivity. The biopharmaceutical industry currently lags behind other industries in implementing digital technologies because of its rigorous and strict regulatory requirements. Adopting Pharma 4.0 tools and concepts benefits manufacturers by harmonizing the…

Robots in Biomanufacturing: A Road Map for Automation of Biopharmaceutical Operations

As BioPhorum authors stated in 2019, “It should come as no surprise to anyone familiar with biomanufacturing that current designs of bioprocess facilities as well as associated manufacturing spaces and support operations require excessive amounts of manual labor and manual interventions that lead to high labor costs and, consequently, total cost to supply” (1). Back then, a realization was starting to take hold in the biopharmaceutical industry that modern robotics showed great potential. However, a cohesive vision of their future…

Delivering on the Promise of Bispecifics: State-of-the-Art Bispecific Antibody Development

Bispecific antibodies (bsAbs) have transformed the field of immunotherapy. However, moving these life-changing therapeutics from the bench to the clinic can be time-consuming and costly. Further, challenges such as aggregation, degradation, fragmentation, and denaturation may ultimately hinder a program from advancing to the clinic. Partnering with a CDMO with relevant experience and technologies can be critical for safely and cost-effectively manufacturing bispecific antibodies. With Selexis’s cell line technology and KBI Biopharma’s manufacturing and analytics, we lead the industry in technologies…

Pressure Vessels for Biomanufacturing: Basic Considerations for Cleaning and Process Compatibility

Pressure vessels are enclosed containers used to contain liquids, vapors, and gases at pressures that are significantly higher or lower than the ambient pressure of their surroundings. Equipment such as bioreactors, holding tanks, mixing tanks, separators, and heat exchangers all are examples of pressure vessels. As such, they form an integral part of biopharmaceutical manufacturing. Apart from pressure containment itself, a key challenge in building pressure vessels is making them meet the high purity and cleanability requirements of bioprocessing. As…

Increasing Dynamic Binding Capacity of Oligo(dT) for mRNA Purification: Experimental Results Using CIM 96-Well Plates

Messenger RNA (mRNA) emerged as a powerful therapeutic tool for treatments in gene therapy, oncology, and infectious diseases, as recently demonstrated by vaccines against Covid-19. mRNA is produced by an enzymatic reaction that can be rapidly designed and scaled-up, and the platform is highly adaptable to different targets. One of the greatest challenges in mRNA production is the removal of process-related impurities stemming from in vitro transcription (IVT) reaction, such as residual nucleotide triphosphates, DNA template, enzymes, abortive transcripts. Affinity-based…

Biologics Manufacturing Without the Big Bioreactors

Over the past few decades, the biotechnology industry has brought to patients a medical revolution with the most advanced medicine ever seen. Yet much of the world’s population cannot afford or get access to these breakthrough therapeutics. That is in part a consequence of the high associated costs of development and biomanufacturing, extended times for regulatory review and approval, and a lack of regional manufacturing and dependable supply chains (because of facility costs and a scarcity of expertise). The recent…

Managing Manufacturing Requirements for Live Biotherapeutics

In 2018, Synlogic explored options for producing clinical-trial material for its lead programs, including a candidate therapy for the rare metabolic disease phenylketonuria (PKU). Like other emerging drug developers, the company evaluated the merits of outsourcing manufacturing to third parties. However, Synlogic leverages synthetic biology tools to design and develop therapeutics based on genetically engineered microbes. Thus, it also needed to consider requirements specific to live biotherapeutics. Late in 2018, Synlogic announced plans to establish its own current good manufacturing…

eBook: A Dynamic Control Strategy for Downstream Continuous Bioprocessing

Continuous processes can have many sources of variability. In downstream unit operations, changes can arise because of feed material variability, resin fouling in chromatography columns, column compression or failure, membrane fouling, depth-filter clogging, and so on. The US Food and Drug Administration’s guideline for continued process verification encourages biomanufacturers to monitor their processes and keep them under a steady state of control. One way to achieve that in continuous downstream processes is to implement a dynamic control system that adapts…

Cell-Line Development for Expressing IgM Antibodies

Immunoglobulin G (IgG) antibodies have been studied and applied as biopharmaceuticals for decades, and they remain dominant in the monoclonal antibody (MAb) pipeline. By contrast, immunoglobulin M (IgM) molecules are much larger and consequently more challenging for biomanufacturing and therapeutic application. Essentially, they appear as clusters of the familiar Y-shaped IgG molecules, joined at their bases in pentameric (Figure 1) or hexameric forms. That structure gives them 10 and 12 binding moieties, respectively, which translate to superior binding power (avidity)…