Sponsored Content

Scale-Up of Single-Use Depth Filtration Systems

Process development engineers are responsible for developing scale-up strategies for efficient and cost-effective manufacture of biological and bioprocess-derived products at bench-scale, pilot scale and at manufacturing scale. A central unit operation in the production of these various therapeutic proteins is cell clarification using depth filtration. Recently, single-use depth filtration technologies have been developed, at scales ranging from the lab, to R&D, process development and on to manufacturing.

In this educational webcast, Laura Brown, Scientific Application Support Specialist II with 3M Purification, will provide guidelines for scaling-up of single-use depth filtration systems, and will review the commonly used single-use depth filtration products used for biopharmaceutical manufacturing.

Rapid Development of Chemically Defined Media and Feeds through Replacement of Basal Hydrolysates

Protein hydrolysates are widely used in mammalian cell culture to improve cell growth and recombinant protein production. However, use of the hydrolysates can lead to significant process variability, due to the limited control of their source and final composition during manufacturing. On the other hand, development of chemically defined media and feeds requires a tremendous amount of work, including comprehensive library screening and spent media analysis.

In this educational webcast, Dr. Hao Chen, Associate Principal Scientist, BioProcess Development at Merck, describes a rapid method for developing chemically defined media and feeds for Chinese hamster ovary (CHO) cell lines from existing proprietary media and feeds by the replacement of basal protein hydrolysates with novel supplements. In the case studies presented, Dr. Chen shows that after two rounds of optimization, the protein hydrolysate was successfully replaced. The resulting cell growth, protein productivity, and product quality were similar in the chemically defined and original media. The entire development process was completed within six weeks.

Production of CGMP-Grade Lentiviral Vectors

Lentiviral vectors are important tools for gene transfer because of their ability to transduce a number of cell types without the need for host cells to be dividing. As a result, investigators are using them as gene delivery vehicles in clinical applications. Since lentiviral vectors play such a vital role in gene therapy, they need to be manufactured at large scale for clinical trials. But, large-scale production using CGMP methods can present a number of challenges.

To address these challenges, the authors of this case study developed a process that allows for extensive scale-up in a safe, sterile, and reproducible system to produce clinical-grade lentivirus. This manufacturing process is very efficient and can be carried out using minimal staff (two operators for production of each subbatch). It provides the extensive scale-up capacity necessary to produce CGMP-grade lentivirus, and it has been used successfully in several completed and on-going phase 1–2 ex-vivo gene therapy clinical trials.

Applied Biosystems® GoPure™ Prepacked Chromatography Columns

Convenient, flexible, and efficient purification of biomolecules

GoPure™ Pre-packed Columns: A high performance, flexible purification platform

Single-use technologies have been widely utilized in upstream processes for many years. Interest in improving operational efficiency, speeding facility turn around and elimination of product carryover risk is now driving adoption of ready-to-connect filtration and purification modules in downstream processing.For chromatography, performance and flexibility that is equivalent to traditional self-pack columns is a prerequisite for use in multiproduct facilities. This webcast will describe GoPure™ Pre-packed Chromatography Columns and a custom packing process for third party resins. Case studies will be presented that demonstrate column packing process stability and scalability.

Evaluating Library Databases for Microbial Identification: Critical Aspects and Recommendations

A thorough evaluation process for microbial identification systems should consist of both a technical and financial review, regardless if you are performing internal testing and outsourcing. Assessment of the library database used for microbial identifications is a critical component of evaluating a system or service in its ability to generate accurate identifications. Comprehensive depth of entries, accuracy and coverage of relevant species frequently found in aseptic and sterile manufacturing environments have a significant impact on both performance and cost. Databases…