Cell Culture Media

Cell Culture Media Fingerprinting: A Three-Tiered Approach

Cell culture media range from simple components to complex chemically defined mixtures. They may contain a number of chemical components, each with individual chemical properties — and any variation in which ingredients can affect cell culture processes and biological products being manufactured. Although simple substances can be identified easily using well-known classical methods such as Fourier-transform infrared spectroscopy (FTIR), analysis becomes more challenging when dealing with complex mixtures. Section VII-3-C of the Q7A guidance from the International Council for Harmonisation…

Validating Prefiltration Dirty-Hold Times for Upstream Media and Feed Solutions: Implications for Establishing In-Process Microbial Control

Biopharmaceutical manufacturing processes require that prepared raw materials and product intermediates be held at different stages. During hold times, however, process and product intermediates are susceptible to microbial risks from bioburden, endotoxins, and exotoxins. Such risks arise from multiple sources, including bioproduction facilities, equipment, operations, and raw materials. Even a prepared intermediate can help microbes to grow. The US Food and Drug Administration’s (FDA’s) guidance on Sterile Drug Products Produced By Aseptic Processing states that “the time limits established for…

Shear-Proof Design Space: Scaling Stirred-Tank Bioreactors for Cell Culture Processes

Establishing a cell culture process across different scales and models of bioreactors involves maintaining constant scale-independent parameters such as pH, temperature, and dissolved oxygen (DO). However, nonlinear and scale-dependent criteria (impeller agitation and gas flow rates) are adjusted on the basis of multiple normalized engineering parameters to accommodate the geometrical and design differences among bioreactors (1–3). Normalized engineering approaches for scaling parameterization often are based on the shear generated by impeller speed and gas flow rates. Kinetic energy transmitted into…

Shaken or Stirred: Comparing Rocking-Motion and Impeller Technology in Cell Cultivation

For decades, stirred-tank reactors (STRs) have been the gold standard in cell cultivation, particularly in large-scale processes. However, rocking-motion (RM) technology offers an efficient alternative that can be a better choice for certain applications. In a November 2022 webinar, Tobias Schenk (product manager at Sartorius) discussed the two technologies, highlighting the strengths of each and how they can be used in tandem for optimal results. The Presentation RM bioreactor technology mixes nutrients into cell culture media using a wave motion…

Accelerating Early Upstream Screening Activities for Viral Vector Therapies

Biopharmaceuticals delivered by viral vectors (VVs) face distinctive obstacles during early upstream development. In October 2022, Andres Castillo (a portfolio manager at Sartorius) noted that drug makers set short development timelines to hasten therapies into the clinical evaluation. Doing so limits time for analyzing complex biointeractions, and studies for culture-media and VV screening are time- and resource-intensive. Castillo and Shanya Jiang (also a portfolio manager at Sartorius) explored how integrated technologies facilitate robust cell-line and VV screening. The Presentation Reflecting…

Deciphering Nutritional Needs in Bioprocess Optimization: Targeted and Untargeted Metabolomics with Genome-Scale Modeling

Microbiology has risen as a major part of global industry over the past three decades. Industrial microbiology, biotechnology, biopharma and now biointelligent production systems (1) embrace a wide range of manufacturing platforms and product areas involving microbes, animal cells, and plant cells — as well as whole organisms. The multibillion-dollar applications of biomanufacturing display great variety. They include microbial-based production of such valuable metabolites as amino acids, vitamins, solvents, and organic acids as well as larger products such as enzymes,…

Increasing Reproducibility of Cell Culture Bioprocesses

Reproducible cell growth and reliable development of a desired product are ideal outcomes for a bioprocessing engineer. If reproducibility is poor, the risk of needing to discard a batch and repeat an entire bioprocess is high and results in a great loss of time and resources. Cells, culture media, and a bioprocess control system are required components of an upstream bioprocess. Each of those can be a source of variability that affects cell growth and viability as well as product…

Deriving Mesenchymal Stromal Cells from Umbilical Cord Lining and Wharton’s Jelly: A Comparative Study of Extraction Methods and Culture Media

Mesenchymal stromal cells (MSCs) are multipotent, self-renewing progenitor cells that can differentiate into adipocytes, chondrocytes, and osteocytes (1). Cultured MSCs are plastic-adherent and spindle-shaped, and they express cell-surface markers CD44, CD73, CD90, and CD105, but not CD14, CD34, CD45, CD11b, CD79a, CD19, or HLA-DR (2, 3). First isolated from bone marrow (BM), human MSCs have been investigated extensively in clinical studies. MSCs also have been isolated from adipose tissue (4) and peripheral blood (5). Perinatal organs and tissues such as…

Using Cutting-Edge Tools to Optimize Cell-Culture Media Development

Although culture-media optimization accounts for a relatively small part of process development, selections made at that stage strongly influence overall bioprocess productivity. Yaron Silberberg (chief scientist at the Ajinomoto Genexine CELLiST Solution Center) joined BPI in July 2022 to present strategies for enhancing media performance. He focused on how emerging tools for statistical analysis and process control facilitate media development for cultures based on Chinese hamster ovary (CHO) cell lines. Silberberg’s Presentation Because materials applied during cell-line development are not…

Innovations in Cell Culture, Sensor Technology, and Process Control: Preparing for Industry 4.0

To celebrate the 20th anniversary of BioProcess International, industry suppliers were asked to respond to a questionnaire about the important technologies, trends, and manufacturing innovations that have shaaped their companies and the entire industry over the past two decades. What has been the most important scientific or technological innovation in the past 20 years of bioprocessing? I have been in the industry since the mid-1990s, and clearly the most significant evolution in biomanufacturing has been the widespread implementation of single-use…