Manufacturing

Introduction: Practicalities of Aseptic Processing for Modern Biological Drug Products

With proliferating modalities entering and moving through the biopharmaceutical industry’s development pipeline, drug presentations are expanding and diversifying to accommodate. Even “traditional” biologics such as monoclonal antibodies (MAbs) have evolved in their formulation and packaging, with the emergence of highly concentrated drug products, prefilled syringes, and devices that enable patients to inject themselves at home rather than visiting a local clinic for drug infusion. Patients, clinicians, and payers are demanding convenience and cost-effectiveness as well as safety, quality, and efficacy…

Cryopreserving Hematopoietic Stem Cells — Part 2: Methods, Materials, and Operations

Bone marrow (BM) remains a critical source of hematopoietic progenitors used in stem-cell transplantation. Currently, however, it is obtained almost exclusively from living donors. That approach limits what quantities of cells can be extracted during an aspiration procedure, in turn reducing the number of opportunities available for treating blood-cancer patients. In BPI’s November 2022 eBook on cryopreservation, I presented part of my conversation with Erik Woods (cofounder, chief science officer, and executive vice president of Ossium Health) about ways to…

eBook: Bioprocess Monitoring — Still on the Path to Dynamic Control

The biopharmaceutical industry agrees that process analytical technologies (PATs) and automation will improve process consistency, enhance biologic quality, reduce production costs, and accelerate workflows. However, technologies for on- and in-line bioprocess monitoring generally remain in process development laboratories rather than being used on the manufacturing floor. Some difficulties stem from limitations with current sensing methods and technologies. Other problems relate to implementation and integration of existing information-technology (IT) solutions. And still other concerns arise when company leaders need to make…

eBook: Monoclonal Antibodies — Reviewing the Past Year in Design, Engineering, Characterization, Manufacturing, and Formulation

Even as advanced therapies and new modalities grab headlines, the monoclonal antibody (MAb) segment of the biopharmaceutical industry continues to perform, bringing needed treatments for emergent infections, rare diseases, and widespread conditions to patients who need help around the world. In fact, MAbs are at the heart of many emerging therapeutics, including bispecifics/multispecifics, antibody fragments, and antibody–drug conjugates (ADCs). But the original molecular class itself still dominates the biopharmaceutical development pipeline and the interest of biotechnology suppliers around the world.…

Delivering the Digital Skills Needs of the Bioprocessing Sector: Realizing the Vision of Industry 4.0 for Your Organization

As the bioprocessing sector marches toward the future, digitalization stands at the heart of the Industry 4.0 vision of smart, self-organizing factories. Along with critical success factors such as infrastructure investment in cloud-based technologies, digitalization enables companies to turn data into intelligence. The realization of Industry 4.0 promises digitally integrated facilities with fully automated manufacturing, real-time traceability, standardized procedures, and agile processes (1, 2). Here, we present the results of a benchmarking survey that drew participation from leading biopharmaceutical companies.…

Overcoming AAV Manufacturing Challenges: Movement Toward Plug-and-Play Solutions

Discovered in the mid-1960s, adenoassociated viruses (AAVs) have become the leading vector for gene therapy in recent years. In October 2012, the first European market authorization for a human gene-therapy product was granted for UniQure’s Glybera (alipogene tiparvovec), which contains an AAV1 vector for treating patients who have lipoprotein lipase deficiency. (The product has been withdrawn from the market because of limited demand.) Both gene therapies currently approved in the United States — Luxturna (voretigene neparvovec) from Spark Therapeutics, approved…

eBook: Cell Therapy — Lessons Learned from Working with Vectors and Cells

Gene-modified cell therapies hold much promise for cancer treatment. Currently, the most popular approach leverages T cells expressing chimeric antigen receptors (CARs), which give immune cells the specificity needed to bind with and destroy malignancies. Despite rapid progress in drug discovery and development, the biopharmaceutical industry still has much to learn about manufacturing CAR T-cell therapies in commercially feasible ways. In this eBook, BPI’s managing editor speaks with subject-matter experts from VIVEbiotech, Castle Creek Biosciences, and Bristol Myers Squibb (BMS)…

eBook: mRNA — Negotiating New Manufacturing Hurdles

The emergency authorization, regulatory approval, and successful commercialization of Pfizer–BioNTech’s and Moderna’s respective mRNA vaccines for SARS-CoV-2 have ignited considerable interest in the modality across the biopharmaceutical industry — and for good reasons. Establishing a platform process for mRNA production could facilitate and accelerate several aspects of vaccine development and manufacturing. Drug makers also intend to leverage benefits associated with cell-free bioprocessing. But as the contributors to this eBook show, mRNA remains a nascent modality, and companies must surmount new…

Cell Therapy — Supply Chain Discussions

The 2017 approval of Kymriah (tisagenlecleucel) has paved the way for other cell therapy products to reach the patients who need them. Each passing year promises to open the regulatory floodgates to more product approvals, but technical and manufacturing issues continue to keep initially high expectations from being realized. One barrier is supply chain complexity, especially for the subset of autologous cell therapies. This eBook features expert commentary from Be The Match BioTherapies, a company providing more than 50 product…

Using Synthetic Biology To Develop Novel Biotherapeutics

A multidisciplinary area of research, synthetic biology involves the use of genetic engineering to create new biological parts, devices, and systems, with potential applications in industries such as healthcare, agriculture, energy, and environmental science. As early as the 1960s, researchers combined advanced techniques in precision genetic engineering with rational drug development and explored approaches in synthetic biology to support development of innovative drug products. Later research shed new light on how molecular networks regulate cellular function and how gene expression…