Multiproduct facilities are increasingly integral to corporate biologics network and supply chain strategies. Manufacturing capacity strategies ensuring appropriate facility design and procedural controls to manage the risks of producing multiple products are critical to the successful deployment of commercial and clinical supply plans. A Chemistry, Manufacturing, and Controls (CMC) Strategy forum was held in Bethesda, MD, in August 2011 to highlight various challenges, risks, and control strategies associated with multiproduct facilities. Multiproduct strategies for the manufacture of a variety of product types at different life-cycle stages and potentially using different host cells were presented with case studies. Experts from both industry and global health authorities discussed facility design considerations as well as procedural controls such as cleaning validation and product testing. The importance of quality risk management (QRM) to multiproduct operations and controls was also discussed using p...
+7
Continuous upstream processing (perfusion) is not a new concept in the bioprocessing industry. Genzyme, Bayer, Centocor, and other companies have been implementing perfusion processes for many years. However, interest is now growing for extending this concept to downstream operations to create fully integrated continuous processing. During the past year, Genzyme has presented on and published about its advancement toward the development of an integrated continuous system ( 1 ). The company has completed proof-of-principle development at laboratory scale with different molecules, and the results, says Konstantin Konstantinov (vice president, commercial process development) have been “highly successful and very exciting.” I spoke with him about the technologies involved in a completely integrated continuous process and how it may affect the design of future facilities. BPI: What are the first steps toward developing a continuous process? KK: Our starting point is to focus on the process objectives first a...
As the bioprocessing industry has shifted away from traditional stainless steel bioreactors and vessels toward single-use technology, a new breed of manufacturing facilities has arisen. Flexible facilities take full advantage of traditional multiuse technologies and combine them with increasingly popular single-use technologies, offering an ability to mitigate risk and decrease manufacturing timelines. Although some companies have made the choice to remain strictly traditional (multiple use) and others have moved fully into single use, the flexible hybrid format gives manufacturers the “best of both worlds.” That paves the way for a new and more effective approach to bioprocessing. Here, we discuss the definition of a flexible facility and why Catalent Pharma Solutions chose to go with such a format. It partnered with ATMI LifeSciences throughout the process of moving from a 43,000-ft 2 facility in Middleton, WI, to a 100,000-ft 2 site in nearby Madison, WI. The Wisconsin production facility houses Cata...
In November 2009, Talecris Biotherapeutics announced an ambitious US$269 million expansion of its Clayton, NC, manufacturing facility. The company was subsequently purchased by Grifols, Inc. in 2011. Constructing a new facility with a state-of-the-art manufacturing process intended to generate clinical products involves top-notch project management, exceptional fortitude, and numerous supply chain decisions. Suppliers are often relied on to provide standard product support. When used effectively, they can be an invaluable resource beyond basic services. Additional support may include engineering expertise, custom device development, and even regulatory insight. Forming strategic partnerships with the right suppliers is important to preventing critical-path project delays. When a biopharmaceutical company builds a new manufacturing facility and implements a novel process design, not all suppliers are willing or able to provide the necessary product support in the time required. As a leading provider of pla...
A number of recent improvements in the engineering of high-titer expression vectors, in biopharmaceutical process development, and in facility construction have converged to present new opportunities for cost-effective, flexible, biomanufacturing facility construction. The evolution of requirements for biopharmaceutical facilities is driven by globalization of the biopharmaceutical industry, patent expirations of several blockbuster biopharmaceutical products, and the increasing shift in new product development away from blockbuster drugs and toward more personalized, niche products. An increase in product approvals (primarily monoclonal antibodies, MAbs) and sales growth of 10% per year for the past five years have transformed the biopharmaceutical industry almost exclusively into a “monoclonal antibody industry.” MAb-related products now represent a significant portion of all biopharmaceuticals approved to date and are anticipated to continue to drive future demand for biopharmaceutical manufacturing ca...
By 2016, five of the top 10 biopharmaceuticals are expected to be monoclonal antibodies (MAbs). Follow-on (biosimilar) versions of those blockbusters will most likely become available in later years due to patent expiry and the introduction of legislation for biosimilars around the world. Personalized therapies will drive the fractionation of the biopharmaceutical market, trending biomanufacturing toward smaller batch sizes and campaign-based production schemes. A growing need for flexible, multipurpose, and cost-effective manufacturing will significantly affect the design of production facilities in the future. Demographic and market forces place China in a position to lead the way in this transformation of biopharmaceutical manufacturing. “Compared with other biopharmaceutical products, MAbs are large proteins that require relatively high doses — and therefore traditionally necessitate high-volume manufacturing facilities,” explains Niels Guldager (senior technology partner in biopharmaceuticals for NNE...
International pharmaceutical and biotech companies are demanding solutions for current and future challenges of their industries — solutions that will stand the test of time while offering significant advances over current manufacturing techniques. Modern and highly proficient production lines for commercial manufacturing of parenteral drugs can represent a crucial criterion in the success of these companies. New and innovative high-speed filling lines for prefilled syringes present an excellent opportunity to meet current production demands. Following is an example of how the latest filling technology fits in. Creativity is critical for sustaining new solutions, but it can often be constrained. The global market for medications involves demands from a number of sources. For example, guidelines from official regulatory agencies are becoming stricter as drug patents are expiring. Meanwhile, competition is becoming fiercer, as are pressures on price. Original manufacturers of biopharmaceuticals faced with s...
About 10 years ago as a vice president of Avecia Biologics, I wrote an article for an early issue of BioProcess International looking ahead at likely changes in biomanufacturing ( 1 , 2 , 3 ). For the best part of the intervening period, Avecia Biologics and Diosynth slugged it out in the marketplace, each trying to grow its contract manufacturing business at the expense of the other. But in a life-altering two-year period between 2009 and 2011, both companies saw their realities and perspectives change: Thus in April 2011 Fujifilm Diosynth Biotechnologies was born, with the Diosynth name retained to reinforce Fujifilm’s long-term commitment to the CMO business. It has been an interesting experience to bring two similar competitors together and get them to operate as one effective business. Faced with the question of how to bring this about, we decided to seek some common denominators. Both businesses had already adopted the “lean six sigma” (LSS) concept as a catalyst for driving business change and im...