Downstream Development

Using Automated Immunoassays for HCP Analysis in Early Bioprocess Development

Biopharmaceutical drugs are produced by a number of expression host systems, mainly mammalian (e.g., Chinese hamster ovary, CHO) and microbial (e.g., Escherichia coli) cells. The goal of subsequent purification steps is production of a pure drug substance, which is essentially free of product variants and process-related impurities such as host cell proteins (HCPs) and nucleic acids. Depending on the process, HCPs can represent the total proteome of a host cell line and accordingly are highly diverse in size, charge, hydrophobicity,…

Host Cell Proteins — Bench to Production Solutions

Enzyme-linked immunosorbent assays (ELISA) are commonly used in analytical chemistry. They can be used in process development for biologic therapies to detect and quantitate host cell protein (HCP) contamination. HCP can cause immunogenic responses in patients and reduce efficacy of these therapies and therefore must be removed to meet regulatory requirements. Some challenges you may run into when utilizing ELISAs are how to prepare your samples, choosing the best generic/commercial ELISA for your needs, and ensuring security of supply for…

Optimizing and Intensifying ADC Aggregate Removal: A DoE Approach to Membrane Chromatography and Rapid Cycling

Antibody–drug conjugates (ADCs) represent a growing therapeutic segment of the oncology field. Five such treatments received market approval from the US Food and Drug Administration (FDA) between 2008 and 2018, whereas three were approved in 2019 and two each were approved in 2020 and 2021 (1). This disruptive technology combines highly potent small-molecule payloads with monoclonal antibodies (MAbs) to improve their specificity as cancer treatment. The antibodies deliver those toxic compounds directly to cancer cells but not to healthy cells,…

Overcoming the Productivity Bottleneck in MAb Capture

It is no secret that progress toward intensifying monoclonal antibody (MAb) production processes has focused on upstream steps. Although the industry welcomed increased production, that also created bottlenecks in downstream processing, including during capture chromatography steps. Technologies that are intended to alleviate such bottlenecks must meet four important criteria to increase productivity and profitability. They must • improve productivity of the MAb capture process, such as by purifying more MAbs, using less media, and/or reducing timelines. • perform as well…

Host-Cell Protein Analytics: History and Future Trends

Different analytical methods have been developed to detect host-cell proteins (HCPs) in bioprocess streams. Advancements in such methods are enabling biomanufacturers to optimize their purification processes and ensure that their products are safe and efficacious. To celebrate the 20th anniversary of BioProcess International, Ken Hoffman (founder of Cygnus Technologies) provides insights into the history, trends, and future of HCP analytics. History: 1990s to 2022 The recombinant therapeutic protein industry was in its infancy in the early 1990s. HCPs were recognized…

Host Cell Protein Analysis: Immunoassays and Orthogonal Characterization By Antibody Affinity Extraction and Mass Spectrometry Methods

Reduction of Host Cell Proteins (HCPs) to the lowest levels practical requires sensitive and robust analytical methods. In this Special Report, Cygnus Technologies discusses industry best practices for HCP analysis and integration of orthogonal methods for in-depth HCP characterization using Antibody Affinity Extraction (AAE) and Mass Spectrometry (MS). Download the report to learn about: Antibody Affinity Extraction for HCP antibody coverage analysis to ensure HCP ELISA is broadly reactive and fit for purpose of process monitoring and product lot release…

Navigating New Options for Commercial-Scale Biopharmaceutical Production

Scalability remains a critically important topic for biopharmaceutical companies. For conventional protein products, the strategy once was straightforward: Drug makers would scale up, beginning with cultures in flasks and roller bottles to grow enough cells to inoculate laboratory-scale (often glass) bioreactors, then again to pilot- and commercial-scale, stainless-steel, stirred-tank bioreactors. At their highest volumes, such reactors can handle tens of thousands of liters of cells and growth media. If a drug developer did not have the requisite equipment to scale…

Reducing Downstream Scale-Up Needs: Advances Toward Continuous Downstream Processing

The biopharmaceutical industry generally acknowledges that upstream and downstream aspects of drug-substance manufacturing are experiencing a capacity mismatch. Today, many recombinant proteins can be produced at expression titers of 3 g/L, with some yields exceeding 10 g/L. Such titers represent 100-fold increases in production capability compared with values from twenty years ago (1, 2). Increases in cell-culture density and improvements to perfusion-mode bioreactor systems hold promise for increasing yields further still. Such developments, combined with the broad availability of concentrated…

Mind the Gap: Managing Relationships Between Upstream and Downstream Intensification

Process intensification (PI) describes an integrated framework of strategies to maximize the output of a unit operation, a process, or an entire facility. By implementing PI strategies, biomanufacturers can accomplish their productivity goals by increasing production speeds and titers, reducing facility footprints, and cutting costs. Overall, such changes improve production efficiency and flexibility. Collectively, the biotherapeutic industry has made multiple advancements in intensifying upstream processing. PI strategies include using high-density cell banks, implementing seed-train intensification (n – 1 perfusion), and…

Ask the Expert: HCP Analysis By Orthogonal Methods in Vaccine and Gene Therapy Development

Regulators require testing of drug products for process-related impurities throughout development to monitor product safety, purity, and efficacy. Low levels of most impurities can be inconsequential, but patient safety demands that host-cell proteins (HCPs) be eliminated or reduced to the lowest levels practical. Enzyme-linked immunosorbent assays (ELISAs) represent a key tool in that endeavor. Antibody-coverage analysis is one part of assessing a platform kit or custom HCP ELISA. In a 15 June 2021 webinar, Jared Isaac (senior scientist at Cygnus…