Separation/Purification

Opportunities in the Field of Host Cell Proteins: Part 2: Ensuring Patient Safety

Process-related impurities such as host cell proteins (HCPs) can raise concerns about biological product efficacy, quality, safety depending on their properties and levels. In the first part of this series, we surveyed relevant regulatory frameworks and detailed potential effects of HCPs on biologic efficacy. Here in part 2, we review available literature on HCPs and patient safety, including information about HCP-related immune responses and adverse clinical events. HCP Effects on Patient Safety At least five HCP-induced factors can influence a…

Two-Step Monoclonal Antibody Purification Using a Multicolumn Continuous Chromatography Platform

Biomanufacturers typically have relied on multistep processes for optimal removal of impurities such as host-cell proteins (HCPs), DNA, adventitious viruses, and aggregates. However, additional purification steps increase downstream expenses significantly, including costs of supplementary resin, hardware, and buffers. The substantial footprint required at a processing site and additional time needed to perform a complete multistep purification process also increase production costs and complicate process execution. Thus, it is imperative to design and test effective purification procedures for high-quality biotherapeutics, but…

Development of a Stand-Alone Monitoring Application for Purification Processes in Biomanufacturing

The ability to monitor unit operations in biomanufacturing is essential because it enables early fault detection and effective root-cause analysis. Below, we present a case study on the development of a stand-alone, data-driven, process-monitoring application for a biomanufacturing purification process. We review the application’s functionality and highlight its utility using a few examples from commercial manufacturing of a therapeutic protein. Lessons learned from the development of that application also are presented. The progress and performance of a purification process have…

Empowering the Next Revolution

Over the past 20 years, the bioprocessing landscape has undergone multiple transformations. Some of those were driven by biological innovations as new therapeutic platforms and modalities were introduced; others were driven by advancements in engineering and applied technologies such as single-use solutions, automation, and artificial intelligence. But the industry’s mission of making life-saving medicines that are effective, safe, and affordable remains the same. It’s rewarding to work in a field that aims to improve people’s health and life expectancies and…

Concentration and Purification of Infectious Viruses

Throughout evolution, viruses have developed mechanisms to interact with and manipulate the genetic material of their target cells. As a result, modern virology uses a growing number of applications to understand these agents of disease. Such applications range from transfection of cells for genetic manipulation to medical studies with a strategic focus on developing novel vaccines, treatments, and gene therapies. Assessment of virus type and content is also important for ensuring food and drinking water safety as well as for…

Increasing Dynamic Binding Capacity of Oligo(dT) for mRNA Purification: Experimental Results Using CIM 96-Well Plates

Messenger RNA (mRNA) emerged as a powerful therapeutic tool for treatments in gene therapy, oncology, and infectious diseases, as recently demonstrated by vaccines against Covid-19. mRNA is produced by an enzymatic reaction that can be rapidly designed and scaled-up, and the platform is highly adaptable to different targets. One of the greatest challenges in mRNA production is the removal of process-related impurities stemming from in vitro transcription (IVT) reaction, such as residual nucleotide triphosphates, DNA template, enzymes, abortive transcripts. Affinity-based…

Reducing Downstream Scale-Up Needs: Advances Toward Continuous Downstream Processing

The biopharmaceutical industry generally acknowledges that upstream and downstream aspects of drug-substance manufacturing are experiencing a capacity mismatch. Today, many recombinant proteins can be produced at expression titers of 3 g/L, with some yields exceeding 10 g/L. Such titers represent 100-fold increases in production capability compared with values from twenty years ago (1, 2). Increases in cell-culture density and improvements to perfusion-mode bioreactor systems hold promise for increasing yields further still. Such developments, combined with the broad availability of concentrated…

AAV Downstream Process and Product Characterization: Integrating Advanced Purification and Analytical Tools into the Workflow

The optimization of the downstream process for Adeno-associated virus (AAV) production with consistent quality depends on the ability to characterize critical quality attributes affecting potency, purity and safety of the final product. As the gene therapy field continues to push products through the clinical pipeline, an increasing need for efficient purification and analytical tools has become evident. In addition, the regulatory space has expanded in parallel to the use of AAV, driving the demand for simple and efficient assays to…

Chromatography in mRNA Production Workflow

Rapid response to global pandemics requires the manufacture of billions of vaccine doses within months. This short timeline must allow for design and testing of active ingredients, development of production and purification processes, clinical evaluations, regulatory filings, and manufacturing. Existing purification methods often have been adopted from laboratory-scale techniques to allow rapid implementation, and those have provided adequate product quality. But future mRNA development will require optimized production and purification processes. Chromatography has been a workhorse of biomanufacturing for decades,…

Purity By Design

Astrea Bioseparations has a well-established modular program to support customer projects from small to large scales with ligands, adsorbents, and chromatography columns that design purity into each process. Demand for increased productivity in biopharmaceutical manufacturing has placed new pressure on downstream purification operations. For recombinant proteins and monoclonal antibodies (MAbs), such pressure stems from significant gains in upstream productivity, particularly from high titers produced using increasingly efficient cell-culture systems. For viral vectors used in gene and gene-modified cell therapies and…